
FPGA HARVARD ARCHITECTURE

Von Neumann Architecture Harvard Architecture

Memory
(Data and
Program)

CPU
Control
ALU

Input
Output

Data Memory CPU
Control
ALU

Input
Output

Program Memory

• Shared memory space
• CPU to memory is bottleneck
• Data and instructions have to
share the memory interface
• The basic word size is the
same for data and instructions

• Separate memory spaces
• Data and instructions access can
happen at the same time
• The basic word size can be different
for data and instructions

Modified Harvard Architecture

Memory
(Data and
Instruction)

Memory
interface

Data Memory Cache CPU
Control
ALU

Input
Output

Instruction Memory
Cache

• Common Main memory space
• CPU to memory bottleneck only for things not in the cache
• Separate memory spaces for data cache and instruction cache
• Data and instructions access can happen at the same time
• The basic word size can be different for data and instructions
• Most modern processors use this approach inside the CPU chip

Linear Sort in FPGA

Data Memory

Pocket A
Memory

Pocket B
Memory

Pocket
Control
Memory
system

Instruction Memory

InterfaceInterface

Interface

Interface

Logic

Sequencer

Logic

I/O

Logic

FPGA

Data &
Data address

Control

Program
Address

The instruction memory is completely separate from the data memory

Performance Comparison of
Linear UBXSort vs C++ std::sort()
• UBXSort is our patented sorting algorithm, US patent #

5,278,987
• It has a complexity of O(N)
• Typical conventional sorting algorithms have complexity of O(N

* log(N))
• The larger the dataset size, the more advantageous of the

UBXSort algorithm
• The benchmark test compares the C++ implementation of

UBXSort against the sort function included in the standard C++
library

• Test is performed on a machine with Intel(R) Xeon(R) CPU E5-
2637 v2 @ 3.50GHz, 16 cores, 512GB RAM

• The host runs on CentOS 6.7, using gcc-4.x, libstdc++.so.6.0.13
• The test meassures the time it takes to sort up to 6 million

double precision float numbers

0

5,000

10,000

15,000

20,000

25,000

1 10 100 1,000

Runtime Comparison: UBXSort vs C++ std:sort()
on double-precision float numbers

UBXSort (ms) std::sort (ms)

Record Count

Ru
n

Ti
m

e
(m

s)

FPGA Sort Implementation advantage

void UBSorter::ProcColumn(unsigned char * pBuf)

{

int i, j, j0;

unsigned char c;

j = startRcd_;

for (i = 0; i < nRcds_; ++i) {

c = pBuf[j * stride_];

if (flags_[c]) { pDest_[curPocket_[c]] = j; }

else {

iniPocket_[c] = j;

flags_[c] = true;

}

curPocket_[c] = j;

j = pSrc_[j];

}

j0 = -1;

for (i = 0; i < 256; ++i) {

if (flags_[i]) {

if (j0 == -1) {

j0 = curPocket_[i];

startRcd_ = iniPocket_[i];

} else {

pDest_[j0] = iniPocket_[i];

j0 = curPocket_[i];

}

}

}

endRcd_ = j0;

pDest_[endRcd_] = -1;

UBXSort C++ code to sort one

character position

§ The C code to sort one character of the key field

§ This is the step that takes most of the time. The for loop

cycles through all of the records. For each cycle it reads the

character to be sorted and does the steps needed to

generate the sorted order for that column, which include:

memory reads, memory writes, arithmetic functions and

decision branch points.

§ In the FPGA implementation all of this work is done in

the time that it takes to do one memory read, about 12 ns.

Therefore the sorting time for 100,000,000 records on 8

character (or 64 bit) field is about 10 seconds.

FPGA Implementation

-- IP VLNV: xilinx.com:ip:blk_mem_gen:8.4
-- IP Revision: 2

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

LIBRARY blk_mem_gen_v8_4_2;
USE blk_mem_gen_v8_4_2.blk_mem_gen_v8_4_2;

ENTITY rcd_mem IS
PORT (
clka : IN STD_LOGIC;
ena : IN STD_LOGIC;
wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
addra : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
dina : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

);
END rcd_mem;

ARCHITECTURE rcd_mem_arch OF rcd_mem IS
COMPONENT blk_mem_gen_v8_4_2 IS
GENERIC (
C_FAMILY : STRING;
C_XDEVICEFAMILY : STRING;
C_ELABORATION_DIR : STRING;
C_INTERFACE_TYPE : INTEGER;

70 more lines of text

C_DISABLE_WARN_BHV_RANGE : INTEGER;
C_COUNT_36K_BRAM : STRING;
C_COUNT_18K_BRAM : STRING;
C_EST_POWER_SUMMARY : STRING

PORT (
clka : IN STD_LOGIC;
rsta : IN STD_LOGIC;
ena : IN STD_LOGIC;
regcea : IN STD_LOGIC;
wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
addra : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
dina : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);

70 more lines of text

s_axi_dbiterr : OUT STD_LOGIC;
s_axi_rdaddrecc : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END COMPONENT blk_mem_gen_v8_4_2;
ATTRIBUTE X_CORE_INFO : STRING;
ATTRIBUTE X_CORE_INFO OF rcd_mem_arch:

ARCHITECTURE IS "blk_mem_gen_v8_4_2,Vivado 2018.3";
ATTRIBUTE CHECK_LICENSE_TYPE : STRING;
ATTRIBUTE CHECK_LICENSE_TYPE OF rcd_mem_arch :

ARCHITECTURE IS "rcd_mem,blk_mem_gen_v8_4_2,{}";
ATTRIBUTE CORE_GENERATION_INFO : STRING;

Verilog or VHDL

FPGA Chip Implementation

Slice of 8 LUTs
6 of which are used

Block of memory

The colored lines
are a representation of
the connections
between the logical
elements

